
QUIP: 18 Title: Implementing Value Types in Qt Author: Giuseppe D'Angelo
<giuseppe.dangelo@kdab.com> Status: Active Type: Implementation Created: 2020-11-09 Post-History:
https://lists.qt-project.org/pipermail/development/YYYY-Month/nnnnnn.html

Overview
This document defines how to design value types in Qt public APIs. The aim is offering a practical
checklist for type authors, and streamlining code reviews for value types.

In this document we are going to use terminology from 1 and 2, which are mandatory material for any value
type author; the reader is expected to have familiarity with them. This document complements the Qt
Coding Conventions 3.

The style of this document deliberately follows the style of the C++ Core Guidelines 4. In particular:

• Each section is numbered, so it can be cross-referenced;

• The numbering is stable over time: new rules only get added with new numbers, and rules that are
removed do not renumber the following ones.

• The numbering is not in any specific order (and in particular it's not in some order of importance); all
the rules apply all the time.

• Most of these rules can be enforced by tooling (and some already are by Clazy, see 5).

It's worth noting that a lot of existing code may violate some of these guidelines (mostly for historical
reasons).

Value classes (VALUE)
This section contains design rules that apply to any value class.

This also applies to any helper datatype defined for value classes: inner enumerations, inner classes, and
so on.

(VALUE.1) Value classes must be default constructible, and
initialize their members
Although not Modern C++ design, this rule stems from being consistent with all the other value classes in
Qt. (Also, historically, Qt containers required default constructability of the contained types. This may still
be the case for some Qt container).

Consider adding isNull or isValid methods if default initialization leaves your class in a non-valid
state.

(VALUE.2) Value classes must be publicly copiable, movable,
destructible
Should go without saying. If a class isn't copiable then it's not a value class. No class should ever lack
move operations (even if they effectively mean copying), so do not write a class in a way that it's not
movable (see also THICK.3).

(VALUE.3) Declare QTypeInfo
Always use Q_DECLARE_TYPEINFO to correctly classify the class. Most of the time (> 99%) a Qt value
class is relocatable, and sometimes primitive. Complex value classes are not commonly found.

Note that in Qt 6 trivial classes are automatically considered primitive types by QTypeInfo. We don't have
that many trivial classes anyhow, and still it wouldn't hurt to be explicit.

mailto:giuseppe.dangelo@kdab.com
https://lists.qt-project.org/pipermail/development/YYYY-Month/nnnnnn.html


(VALUE.4) Allow storing in QVariant
Any value class should have either a built-in constructor for QVariant or have Q_DECLARE_METATYPE
applied to them. We do not actually go for qRegisterMetaType; it's fine if the user does it as well
(calling it multiple times is a no-op).

(VALUE.5) Define debug streaming operators
Debug meaning qDebug. We do not offer built-in streaming into std::ostream objects.

(VALUE.6) Define QDataStream streaming operators
Although usage of QDataStream is frowned upon (in favor of standardized formats such as CBOR or
JSON), the streaming operators for QDataStream must be defined for consistency.

In Qt 6 QMetaType picks up the streaming operations automatically, allowing QVariant objects that hold
your type to be streamed. This, in turn, unlocks e.g. QSettings, DND with item views, and similar.

(VALUE.7) If a class is comparable for equality, then it must also
offer a qHash overload
Rationale: if you can compare for equality, then your type should be usable as a key in QHash. Strongly
consider using qHashMulti or QHashCombine in your implementation.

We still lack a policy regarding offering std::hash support.

(VALUE.8) Do not use public inheritance
A Point3D is not a Point2D with the addition of a Z value. Due do how inheritance works in C++, and in
particular how it interferes with value semantics, one should never have value classes inherit from each
other. Strongly prefer composition instead.

Non-public inheritance (to share implementation) is fine.

Note that we do not enforce this rule in code towards client code: value classes must not be marked as
final.

(VALUE.9) The moved-from state is valid but unspecified
This means that users can call any function without preconditions on a moved-from instance, and the
instance must still have valid class invariants. Pay extreme attention at what this implies for a class.

(VALUE.10) Default constructors should be noexcept
This includes not allocating any memory. Pimpled types must work with a null d-pointer anyhow because
of VALUE.9 + VALUE.12, hence the default constructor can simply set the d-pointer to nullptr and still
be noexcept. (Mut. mut., they can set the d-pointer to a sharedNull object).

(VALUE.11) Default constructors should be constexpr
This allows to use the type e.g. as a global object without risking a static initialization order fiasco and the
overhead associated with the workarounds (such as Q_GLOBAL_STATIC). It makes thin abstractions with
trivial destructor usable as constexpr objects (they're literal types), and thick abstractions usable as
constinit.

(VALUE.12) Move operations should be noexcept
Should go without saying.



(VALUE.13) Copy operations should be noexcept
Qt uses implicit sharing. Hence, copies are cheap, and they don't allocate memory; copy operations
should therefore be noexcept. The risk of overflowing the reference counter is practically non-existent.

(VALUE.14) Provide relational comparison operators as hidden
friends
So they reduce the search space when finding overloads, and avoid triggering unwanted conversions. See
also 6.

(VALUE.15) Build relational operators in terms of the underlying
operations
Don't give the built-in operators fuzzy or fancy semantics. This is surprising for end-users, ends up
corrupting the API (one must use isStrictlyEquals or some other strange name, rather than the
built-in == operator), and causes API flaws (the fuzzy comparisons in QPointF / QSizeF / etc. make it
impossible for them to be hashable).

(VALUE.16) Value classes are only reentrant by contract
Unless extra guarantees are offered by the class author, you must not protect anything from concurrent
access.

However, many users expect const access to fall into the reentrancy contract (technically, it does not) by
making const access thread safe. Therefore any internal side-effect of const functions that could result
in a data race (such as caching, JIT compilation, etc.) when called on the same instance must be mutex
protected. Otherwise: there should be big warnings in the documentation.

Thin abstractions (THIN)

(THIN.1) Thin abstractions should be fully inline, non-exported
classes
Do not export thin abstractions. Define them fully inline. (Marking a fully inline class as exported might still
output unnecessary symbols on certain platforms, so don't do it.)

Individual functions can be exported if it makes sense (too complex to have in a header; may benefit from
out-of-line changes; etc.). Always provide arguments in code comments as of the why a certain function is
exported.

(THIN.2) Honor the rule of zero
Do not even declare the destructor; the move operations; or the copy operations. (Let the compiler do its
job.) If you like you can be explicit in the code by leaving a comment like:

// compiler-generated special member functions are fine!

(THIN.3) Thin classes should have trivial destructors
Which, combined with VALUE.11, makes them literal types, thus suitable for being used as constexpr
(global) objects.

Note that "trivial destructor" does not mean "compiler-generated destructor"; it means (roughly) "no code
is run to destroy this class". A class that contains a QVector does not have a trivial destructor!



Corollary: a class that cannot have a trivial destructor is extremely likely not a thin abstraction, but a thick
one. A non trivial destructor has implications on the moved-from state reached through a
compiler-generated move constructor (and it may easily require customization of the moves). Once one
goes for the rule of five, we are in thick abstraction territory.

(THIN.4) Prefer using class and accessors over struct
The overwhelming majority of value classes in Qt have accessors and private data members, even
when the classes themselves don't have invariants (e.g. QPoint). This is frowned upon in Modern C++, but
it's an established pattern in Qt. One should deviate from it only for good reasons.

Thick abstractions (THICK)

(THICK.1) Always have a d-pointer
Thick abstractions should be pimpled. Even if right now one doesn't see the need for expansion, always
leave a class Private *d = nullptr; to allow for future additions, and an out-of-line destructor to
be able to free it (the day it actually gets used) without breaking ABI.

(THICK.2) Honor the rule of five
Because THICK.1 imposes an out-of-line destructor, make sure you declare all five special member
functions:

1. copy constructor

2. copy assignment operator

3. move constructor

4. move assignment operator

5. destructor

Implement them as instructed below (THICK.3, THICK.4, THICK.5).

(THICK.3) Implement the move constructor idiomatically
The move constructor must be inline (and likely = default, see below). In case it can't be defaulted, it
still must be defined inline.

Since thick abstractions are typically pimpled, this means

1. resetting the moved-from instance's d-pointer to nullptr, and being ready to deal with a null
d-pointer in all codepaths;

2. or resetting the d-pointer to point to a statically allocated special instance (sharedNull or similar).

Use std::exchange to implement the body of the move constructor and reset the moved-from to a valid
but unspecified state (cf. VALUE.9); do not hand-roll std::exchange in terms of std::move plus a
reset.

For pimpled types that use Q(Explicitly)SharedDataPointer (cf. THICK.8), provide an inline
defaulted move constructor, and use the QT_DECLARE_QESDP_SPECIALIZATION_DTOR and
QT_DEFINE_QESDP_SPECIALIZATION_DTOR family of macros to make it work (grep in qtbase for usage
examples).

(THICK.4) Implement the move assignment operator idiomatically
Don't DIY, use the convenience macros for this (private APIs):



• If a class uses memory and only memory as its resources (no file handles, no user-defined
datatypes, etc.) then the move operations are pure swap, so use
QT_MOVE_ASSIGNMENT_OPERATOR_IMPL_VIA_PURE_SWAP

• A possible exception are types that allocate arbitrary (huge) amounts of memory and one
wants to be certain not to keep allocated for too long, like QImage/QPixmap. Be sure to
document the different strategy via code comments.

• Otherwise, use QT_MOVE_ASSIGNMENT_OPERATOR_IMPL_VIA_MOVE_AND_SWAP

(THICK.5) Implement the copy operations idiomatically
The copy constructor should be out-of-line, and likely = default.

The copy assignment operator should be

• inline

• implemented as copy-and-swap. Any alternative implementation must be justified with a
comment.

Both should be noexcept (VALUE.13).

(THICK.6) Implement a member swap and a free swap overload
Thick classes can usually be swapped faster than std::swap can do, so they must provide a free swap
function. Implement that function in terms of a member swap. (Technically, the member isn't required, and
the free could be a friend; but stick to this pattern for consistency with existing code.)

The free swap overload is automatically provided by Q_DECLARE_SHARED.

(THICK.7) Use reference counting / implicit sharing
Qt thick value types are normally reference counted. If you have a type that is not, it must be justified with
comments in code and carefully explained in the documentation. (Rationale: users may write getters that
return objects of the type by value or similar.)

(THICK.8) Use managed reference counting
In order to implement reference counting avoid the NIH syndrome by employing a hand-rolled
implementation. Instead, one of the established solutions, most likely (at the time of this writing)
QExplicitlySharedDataPointer + QSharedData.

Do not use QSharedDataPointer; it is error prone and expensive (as it detaches on any non-const
access); working around its API is cumbersome. Exception: use it if your API does not allow for any
mutation (e.g. a "result object" from some query, with data that you can only read, so no detach is ever
necessary).

Use Q_DECLARE_SHARED to correctly declare typeinfo (VALUE.3) and swap (THICK.6).

Implement a member detach() (as public API) to signal that your type is implicitly shared, and to
implement detaching correctly (incl. allocating a d-pointer if you don't have one, because
default-constructed or moved-from).

Acknowledgments
Thanks to KDAB, the Qt, C++ and OpenGL Experts.

Thanks to Marc Mutz for tirelessly bringing these efforts forward along the years. Thanks to Sérgio Martins
for creating and maintaining Clazy.



References

1 QtWS15 - Qt Value Class Design, Marc Mutz, KDAB
https://www.youtube.com/watch?v=Y3YMA1Ip3ek

2 Designing value classes for modern C++ - Mark Mutz @ Meeting C++ 2014
https://www.youtube.com/watch?v=_cwVvBsZE6M

3 Coding Conventions https://wiki.qt.io/Coding_Conventions
4 C++ Core Guidelines https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
5 Clazy List of checks https://github.com/KDE/clazy#list-of-checks
6 The Power of Hidden Friends in C++

https://www.justsoftwaresolutions.co.uk/cplusplus/hidden-friends.html

https://www.youtube.com/watch?v=Y3YMA1Ip3ek
https://www.youtube.com/watch?v=_cwVvBsZE6M
https://wiki.qt.io/Coding_Conventions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/KDE/clazy#list-of-checks
https://www.justsoftwaresolutions.co.uk/cplusplus/hidden-friends.html

	Overview
	Value classes (VALUE)
	(VALUE.1) Value classes must be default constructible, and initialize their members
	(VALUE.2) Value classes must be publicly copiable, movable, destructible
	(VALUE.3) Declare QTypeInfo
	(VALUE.4) Allow storing in QVariant
	(VALUE.5) Define debug streaming operators
	(VALUE.6) Define QDataStream streaming operators
	(VALUE.7) If a class is comparable for equality, then it must also offer a qHash overload
	(VALUE.8) Do not use public inheritance
	(VALUE.9) The moved-from state is valid but unspecified
	(VALUE.10) Default constructors should be noexcept
	(VALUE.11) Default constructors should be constexpr
	(VALUE.12) Move operations should be noexcept
	(VALUE.13) Copy operations should be noexcept
	(VALUE.14) Provide relational comparison operators as hidden friends
	(VALUE.15) Build relational operators in terms of the underlying operations
	(VALUE.16) Value classes are only reentrant by contract

	Thin abstractions (THIN)
	(THIN.1) Thin abstractions should be fully inline, non-exported classes
	(THIN.2) Honor the rule of zero
	(THIN.3) Thin classes should have trivial destructors
	(THIN.4) Prefer using class and accessors over struct

	Thick abstractions (THICK)
	(THICK.1) Always have a d-pointer
	(THICK.2) Honor the rule of five
	(THICK.3) Implement the move constructor idiomatically
	(THICK.4) Implement the move assignment operator idiomatically
	(THICK.5) Implement the copy operations idiomatically
	(THICK.6) Implement a member swap and a free swap overload
	(THICK.7) Use reference counting / implicit sharing
	(THICK.8) Use managed reference counting

	Acknowledgments
	References

